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New HTS superconductors + integrated high-B physics 
enable an innovative strategic vision for ���

US leadership in accelerated fusion energy development	



G-2 Integrated steady-state & 
boundary in burning plasma	



G-4 Control at high Qp	



G-5 Predict & avoid damaging���
 off-normal events	



G-7 RF launchers & coupling	



G-9 Tame PMI & heat exhaust 	



G-10-15 Integrated fusion 
materials & components	



     High-B physics:	


-  High gain at small size	


-  Margin to operational 

limits & disruptions	


-  Effective RF CD & 

innovative launchers for 
steady-state	



-  High pressure boundary 
& PMI control	



Demountable HTS coils & 
Modular replacement	



G-8 High-B magnets	


Gaps	

 HTS high Bpeak> 20 T 	



Superconductor coils	



Steady-state 	


Compact	



FNSF/Pilot	



Next 10 years	


HTS magnet R&D	



HTS joints &	


Blanket R&D	
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A strategic plan should accelerate fusion development by 
considering critical knowledge gained in past decade	



1.  Large size à risks in cost and schedule���
ITER successful fusion gain > 20 years away���
 “At some point delay is equivalent to failure” ���
FESAC 2007 Gaps report5 ���
	



2. 	

Superconductors evolved (G-8) ���
HTS1 tapes allow ~ double B field ���
à Steady-state, high gain small devices ���
	



3. Boundary physics evolved (G-9)	


a)   ELMs disallowed in ITER à ���

Transients disallowed in FNSF/Pilot/DEMO	


b)  Power exhaust could threaten fusion viability���

& does not favor large size.	


c)   Quiescent high-field SOL à locate RF launchers 	



Small + ���
High-B +���
Superconductor	


= ���
Margin to 
disruptions + 
Steady-state +	


Reduced cost	


& schedule 	



Evolved���
Strategy	



Strategic	


Input	



Key Observations	
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Size has risk: Lesson from fission & ITER���
Minimize volume of first nuclear devices to assure 

timely development of physics and technology	



•  JET ~ 100 m3 took < 5 years to construct	



•  FIRE B~10T burned at right size, but 
pulsed due to copper coils	



Design'parameter'
Shippingport2*
“Pilot”*Fission*
Plant*ca.*1954*

ITER3*
“Pilot”*Fusion*
Plant*ca.*2006*

Scale*factor*
ITER/Shippingport!

Pthermal'(MW)' 236!! 500!! x*2.5!
Core'volume'(m3)' 60!! ~1600!

(shield!+!TF)! x*27*

Cost'(2012'US'B$)' 0.6! ~!30! x*50*
Cost'/'Core'volume'
(M$/m3)' 10* ~*18* ~*2*
Construction'time'to'
“burn”'(years)' 3.3* ~*28*** x*8*
!

VFIRE
VITER

~ 1
30

Cost &���
schedule	


G-8	


G10-15	
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Superconductors evolved Astonishing critical current of new 
high-temperature superconductors (HTS) at Bpeak>20 T 

provides possibility to ~double loss-free B field  	



•  Sub-cooled tapes at���
~20 K provides 
operational margin 
to superconductor1.	



•  Limitation becomes 
the structural stress 
rather than 
superconductor.	



	


•  Tapes allow joints.	


	



G-8	
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Known physics scaling + Superconductor Bpeak > 20 T à 
High-gain burning plasma compact size & Steady state!	



 
nT τ E 

βNH
q*
2 R1.3B3

  

Pfusion
Swall


βN

22

q*
2 RB4

ARC /w HTS 
superconductor	



Gain	

 Power	


density	



FIRE12	

 ARC10,14	



R (m)	

 2.14	

 3.2	



Bo (T)	

 10	

 9.2	



Qp	

 >10	

 >10	



Steady-	


state	

 No	

 Yes	



Tritium	


breeding	

 No	

 Yes	



Qelectric	

 0	

 ~ 4	



FIRE /w ���
copper coils	



To scale	



Cost &���
schedule	


G-2	


G-4	



$∝ R3
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B0~10 T, compact SC HTS tokamak enables more realistic ���
high-Qp steady-state option by providing margin ���
to intrinsic disruption, control & operation limits	



Steady-	


state���

tokamak	



B0���
(T)	



R	


(m)	



Pelec	


(MW)	

 Qp	



Pn	


S	



MW	


m2	



ARIES-
AT6���

SC-NbSn	


5.8	

 5.2	

 +1000	

 44	

 3.3	

 2.5	



ARC14���

SC-HTS	

 9.2	

 3.3	

 + 230	

 14	

 2.2	

 1.2 	



FNSF-
AT4,7	



Copper	


5.5 	

 2.7	

 - 600	

 2.6	

 1.6	

 1	



Nuclear	


mission	



Capital & Operating	


Costs / Economics	



Cost &	


Schedule���
G-2 G-4	


G-5 G-8	



Disruption damage���
relative to ITER 	



Pn

 

Wth / S
Wth / S( )ITER

 
nT τ E 

βNH
q*
2 R1.3B3

Operational limit diagram	



Electrical cost13 ���
~ 250-500 M$/FPY	
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Heat exhaust critical to the viability of all FNSF/Pilot designs ���
 New edge physics favors small size + high gain à high B	



Pheat ~ Pneutron
1+ 5 /Qp( )

4
~ R2

q// ~
PheatB
R

λq ~
1
Bp

ADX	



Innovative 
solutions at 

reactor-
matched	



B, q//	



G-9	



LaBombard	



Evolved ���
edge ���
physics	



q// ~ R B 1+ 5 /Qp( )

Neutron	


mission	



US Leadership opportunity	



Near-term 	


Edge physics	



FNSF design	


challenge	



 
nT τ E 

βNH
q95
2 R1.3B3

Ref. 9	
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Efficient RF current drive is synergistic with high-B &���
critical to developing robust steady-state in tokamaks	



•  Compels near-term research in high-field & inside launch RF.	


	



Higher LHCD	


efficiency at high field	



Quiescent PMI ���
high-field-side RF ���

 launchers 	



n=2x1020	



Control current profile ���
at small R, T~12 keV ���
for optimized AT13,14	



ICD/I ~ 37%  &  Qp ~ 15	



ARC	



ARC	

η20 (A/W/m2)	



G-2	


G-7	



R. Parker	



US Leadership opportunity	



ω ce

ω pe
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FNSF mission favors demountable coils for modular replacement���
 Finite resistance HTS joints à minimal Pcoil à  Pilot option ���

US Leadership opportunity in configuration & maintainability	



Copper FNSF-ST8���
Pcoil~400 MW	



Copper FNSF-AT7 ���
Coil Pcoil~600 MW	



ARC: Resistive joints /w	


HTS superconductors11���

Coil Pcoil~ 1 MW	



Conceptual FNSF designs	


R/a=3.5	

R/a=1.7	

 R/a=3	



G-8	


G-10	


G-13	


G-15	
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     High-B physics:	


-  High gain at small size	


-  Margin to operational 

limits & disruptions	


-  Effective RF CD & 

innovative launchers for 
steady-state	



-  High pressure boundary 
& PMI control	



New HTS superconductors + integrated high-B physics 
enable an innovative strategic vision for ���

US leadership in accelerated fusion energy development	



G-2 Integrated steady-state & 
boundary in burning plasma	



G-4 Control at high Qp	



G-5 Predict & avoid damaging���
 off-normal events	



G-7 RF launchers & coupling	



G-9 Tame PMI & heat exhaust 	



G-10-15 Integrated fusion 
materials & components	



Demountable HTS coils & 
Modular replacement	



G-8 High-B magnets	


Gaps	

 HTS high Bpeak> 20 T 	



Superconductor coils	



Steady-state 	


Compact	



FNSF/Pilot	



Next 10 years	


HTS magnet R&D	



HTS joints &	


Blanket R&D	



Minervini: HTS magnets	



LaBombard	


PMI & heat	


exhaust	



Parker	


RF current	


drive	



ADX	





11	

FESAC-SP Whyte	



Backup materials	
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Foundations	

 Year 1-3	

 Year 4-7	

 Year 8-10	

 FNSF options	



Transport	

 H98 OK, no X-point MARFE	

 Disruptivity  vs. 
performance���
assessment	

Stability	

 ELM-free 

stationary ped.	



Wave-particle	

 Design HFS launch: 
LHCD & ICRF	



Install, assess 
PMI & coupling	



High ηCD, j 
profile control	



Valid RF model 
& launchers	



PMI	

 Design divertors	


PMI diagnostics	



Install divertors, 
q// vs. B physics	



Integrated q// 
PMI solution @ 

high pressure	



Heat exhaust/
PMI solutions	


Solid vs liquid	



Long Pulse	



Plasma sustainment	

 CD efficiency  
f(B) on HFS	



Disruption rates 
away from limits	



Current control 
toolkit	



B-field sustainment	

 Prototype HTS 
conductor & joints	



Wound coils /w 
joints, HEP 	



B>20 T jointed 
coil demo	



Cu vs. HTS	


Pilot?	



Materials	

 Erosion resistance 
high-Z PFC	



Study: modular 
replacement	



High-T, high-Z, 
low Eion divertor	



Modular 
replacement	



National  ADX and  HTS magnet and ADX 
initiatives are aligned and timely to the OFES ���

Burning Plasma Science mission 	



~17 M$/y	

 ~4 M$/y + demo coil	
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ADX provides a critically needed ���
near-term, small-scale step into the ITER/FNSF ���

heat exhaust & PMI parameter range  	



q// ~ PheatB / Rqθ ~ PheatBθ / R

pthermal (MPa)

// physics	

Projected heat flux	



Atomic &���
PMI	



physics	
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Heat exhaust critical to the viability of all FNSF/Pilot designs ���
 New edge physics favors small size + high gain à high field	



Pheat ~ Pneutron
1+ 5 /Qp( )

4
~ R2

q// ~
PheatB
R

λq ~
1
Bp

ADX	



Innovative 
solutions at 

reactor-
matched	



B, q//	



G-9	



LaBombard	



Evolved ���
edge ���
physics	



q// ~ R B 1+ 5 /Qp( )

Neutron	


mission	



US Leadership opportunity	



Near-term 	


Edge physics	



FNSF design	


challenge	



 
nT τ E 

βNH
q95
2 R1.3B3

Ref. 9	



q// ~
1+ 5 /Qp( )
B1.3
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ARC:  9 Tesla “JET”, 250 MW net electricity���
Steady-state tokamak far from disruptive limits 	



Nuclear	


Fusion Power	

 525 MW	



Blanket & Depth	

 Liquid FLiBe > 0.8 m 	


ηthermal  /  Tblanket	

 ~ 0.5  /  ~ 900 K	



Tritium breeding ratio	

 1.11	


Plasma core	



R  /  a   /  𝜅	

 3.3 m /  1.1 m  / 1.8	


B0	

 9.2 T 	



q95   /  qmin	

  7.2   /    ~ 3	


𝛽N  /   H89  	

 2.59   /   2.7	



G89 : 𝛽N  H98  / q95
2	

 ~ 0.15	



Greenwald fraction	

 ~0.6	


RF current sustainment	



CD Efficiency 	

 > 0.4  1020 A/W/m2 	


Bootstrap fraction	

 63%	



Margin to limits!	


Scenario already achieved	


In present tokamaks	
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ARC exploits two features of new SC:���
 Bcoil,max~23 T  + Tapes used for joints	



1. Support ring,  2. Top TF leg ���
4. Mechanical joint 6. Epoxy 
enforcement 7. Electrical joint	



Peak stress ~ 0.75 GPa	


~30% margin for 316SS LN	
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ARC exploits two features of new SC:���
 Bcoil,max~23 T  + Tapes used for joints	



1. Support ring,  2. Top TF leg ���
4. Mechanical joint 6. Epoxy 
enforcement 7. Electrical joint	



“Comb-style” TF resistive 
joints are expected to lead ���
to ~ 1 MWelectric dissipation	
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HTS high-field allows FNSF/Pilot fusion & 
nuclear requirements with a modest integrated 

physics gain G89 already achieved in AT plasmas 	



Sips IAEA 2005, Zarnstorff 
Demo workshop 2012 	



FNSF-���
AT4	



ARIES-	


AT4	



ARC	



 
nT τ E 

βNH
q95
2 R1.3B3
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B~10 T, SC compact tokamak provides realistic ���
high-gain steady-state option far from ���

intrinsic operating and disruptive limits	


Nuclear &	


Electricity	



Power���
exhaust	



Steady-state &���
 Disruptions	



Capital & Operating	


Costs	



Violation or within 10% ���
of intrinsic limits:���

fbs=1, 𝜅 < 5.4/A, no-wall βN, ���
kink q*~2, density limit fGr =1	



	



Qp < 5  à excess relative���
heat loading per neutron	



Electrical cost ���
~ 500 M$/FPY	



Cost &	


Schedule���
G-2 G-4	


G-5 G-8	



Steady-	


state���

tokamak	



B���
(T)	



R	


(m)	



Pelec	


(MW)	



Pf	


(MW)	



Pn / S ���
(MWm-2)	

 Qp	



Pheat / 
4Pn	



fBS	

 𝜅	

 βN	

 q* 	

 fGr	



ARC ���
SC-HTS	

 9.2	

 3.3	

 230	

 525	

 2.2	

 14	

 1.3	

 0.63	

 1.8	

 2.6	

 4.8	

 0.65	



ARIES
-AT���

SC-NbSn	


5.8	

 5.2	

 1000	

 1760	

 3.3	

 44	

 1.1	

 0.92	

 2.2	

 5.4	

 2.1	

 0.95	



FNSF-
AT	



Copper	


5.5 	

 2.7	

 -600	

 230	

 1.6	

 2.6	

 2.9	

 0.74	

 2.3	

 3.7	

 2.8	

 0.63	
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ACCOME has optimized large advantages of HFS-
LHCD + poloidal launch location near X-point	



n// accessible	
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Optimized CD efficiency leads to substantial 
control of AT current profile below no-wall βN limit	
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HFS-LHCD+ high B: Excellent penetration at  
Lawson criterion minimum <T>~12 keV, ���

~ doubled CD efficiency to standard scenarios	



pth~ 0.8 MPa	



0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

10 15 20
Maximum B on coil, Bcoil, max (T)

10 15 20 10 15 20 10 15 20

0.2

r/
a 

 
 η

20
 a

t m
in

. r
/a

 

(a)  ε=0.33    〈T〉=12 keV

HFS launch

LFS launch

(b)  ε=0.33    〈T〉=18 keV (c)  ε=0.25    〈T〉=12 keV (d)  ε=0.45    〈T〉=12 keV

LHCD windows:
          LFS launch          

          HFS launch

B0 (T) 5 10 5 10 5 10 5 2.5 
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Small scale + demounting has 
surprising  synergistic benefits:���

Reduced volume à ���
reduce cool/heat time to ~2-3 days ���

of structure���
 à Modular maintenance 	



A single, module is only 
replaced unit ���
(vacuum vessel + PFCs +	


Built-in test stations 
integrated off-site)	
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Small scale à Modular VV à ���
Low-risk immersion liquid blanket ���

(FLiBe) for FNSF	



FLiBe	



Tritium Breeding Ratio: 1.14���
���
Eliminate blanket solid waste	


	


No “blanket” DPA limit	
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FLiBe provides outstanding heat removal 
capabilities at high T à thermal efficiency	
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Lessons from ARC..	


•  Is NOT that ARC is the ultimate, best fusion reactor design..	



•  Or that every detail of ARC is settled and easily done…	



•  ARC and it innovations was the result of ~dozen MIT students 
working for a semester+ , showing that it was feasible to produce high 
gain, SS reactor at JET size	



•  The real lesson of ARC is that when you change the most fundamental 
aspects of your MAGNETIC fusion device, i.e. scale, B strength and 
coil configuration, you also fundamentally change the design options 
and solutions open to you…	




